Showing posts with label Cbse class 8 math. Show all posts
Showing posts with label Cbse class 8 math. Show all posts

Monday, July 20, 2020

Algebraic Expressions and Identities

Algebraic expressions are expressions formed from the variables and the constants. A variable can take any value. The value of an expression changes with the value chosen for variables it contains.
  A number line has infinite number of points. A variable can take position on number line.
  Expressions containing one, two or three terms are called monomial, binomial and trinomial respectively.
  Any expression having one or more terms is called polynomial.
  A monomial is obtained on multiplying any monomial with another monomial.
  The numerical factor of a term is called its coefficient.
  An identity is a standard equality which is true for all the values of the variables in the equality.
  Few commonly used identities are
        I.   (a + b)2 = a2 + b2 + 2ab
       II.   (a – b)2 = a2 + b2 – 2ab
      III.   (a + b)(a – b) =a2 – b2
      IV.   (x + a)(x + b) = x2 + (a+b)x + ab
Note – Mainly the above formulas are used to solve all the problems of this chapter.
1.  Find the value of: x2 – 1/5 at x= -1.
2.  What is the value of x2 + y2 – 10 at x = 0 and y = 0?
3.  Find the product of 9a, 4ab and -2a.
4.  Simplify (a + b + c)(a + b - c).
5.  Using identities evaluate: 8.56 * 11.60.
6.  Using identities evaluate: (99)2.
7.  Simplify x(2x – 1) + 5 and find its value at x = -2.
8.  Evaluate the value of (95)2 using identities.
1.  Which of the following is the numerical coefficient of x2y2?
        I.   0
       II.   1
      III.   x2
      IV.   y2
2.  Which of the following is the numerical coefficient of -5xy?
        I.   5
       II.   -x
      III.   -5
      IV.   -y
3.  pqr is what type of polynomial?
        I.   Monomial
       II.   Binomial
      III.   Trimonial
      IV.   None of these
4.  The value of x2 - 5 at x= -1 is-
        I.   -2
       II.   -1
      III.   -4
      IV.   -5
5.  a2-b2 is a product of
        I.   (a+b)(a-b)
       II.   (a+b)(a+b)
      III.   (a-b)(a-b)
      IV.   None of these
6.  Which of the following is the value of (x+ 1/x)2?
        I.   x+ 1/x2
       II.   x- 1/x2
      III.   x+ 1/x2 + 2
      IV.   x2+ 1/x2 + 2x
7.  Which of the following is obtained by subtracting x2-y2 from y- x2?
        I.   -2(x2-y2)
       II.   -2(x+ y2)
      III.   2(x2+ y2)
      IV.   2(x2- y2)
8.  What degree does x3 - x2y2 - 8y2+ 2 have?
        I.   2
       II.   3
      III.   4
      IV.   7
9.  What is the value of 5x25 - 3x32 + 2x-12 at x=1?
        I.   0
       II.   2
      III.   4
      IV.   None of these
10.  What is the product of (x+a) and (x+b)?
        I.   x2+ (a-b)x + ab
       II.   x2 + (a+b)x - ab
      III.   x2 + (a+b)x - ab
      IV.   x2 + (a+b)x + ab
ANSWERS
        1.    II
        2.    III
        3.    I
        4.    III
        5.    I
        6.    III
        7.    I
        8.    III
        9.     III
        10.  I
Maximum time- 30 minutes
Maximum marks- 20
1.  Add: a + b + ab; b – c + bc and c + a + ac.      (2)
2.  Verify the identity (x + a)(x + b) = x2 + (a + b)x + ab for a = 2, b = 3 and x = 4.      (3)
3.  Find the volume of cuboid whose dimensions are (x2 – 2); (2x + 4) and (x - 3).      (4)
4.  Write the terms and coefficients of 3 – xy + yz – xz.      (2)
5.  Simplify: (a + b +c)(a + b – c).      (2)
6.  Simplify the expression x(2x-1) + 5 and its value at x = -2.      (3)
7.  Using suitable identities find (xy + 3p)2.      (2)
8.  Subtract 5x2 – 6y2 + 8y – 5 from 7x2 – 5xy + 10y2 + 5x – 4y.      (2)

Saturday, May 9, 2020

Algebraic Expressions and Identities Important Questions For Class 8 (Chapter 9)

Algebraic Expressions and Identities Important Questions For Class 8 (Chapter 9)

. Using suitable algebraic identity, solve 10922
Solution:
Use the algebraic identity: (a + b)² = a² + 2ab + b²
Now, 1092 = 1000 + 92
So, 10922 = (1000 + 92)2
(1000 + 92)2 = ( 1000 )² + 2 × 1000 × 92 + ( 92 )²
= 1000000 + 184000 + 8464
Thus, 10922 = 1192464.
2. Identify the type of expressions:
(i) x2y + xy2
(ii) 564xy
(iii) -8x + 4y
(iv) x2 + x + 7
(iv) xy + yz + zp + px + 9xy
Solution:
(i) x2y + xy2 = Binomial
(ii) 564xy = Monomial
(iii) -8x + 4y = Binomial
(iv) x2 + x + 7 = Trinomial
(iv) xy + yz + zp + px + 9xy = Polynomial
3. Identify terms and their coefficients from the following expressions:
(i) 6x2y2 – 9x2y2z2+ 4z2
(ii) 3xyz – 8y
(iii) 6.1x – 5.9xy + 2.3y
Solution:
(i) 6x2y2 – 9x2y2z2+ 4z2
Terms = 6x2y2, -9x2y2z2, and 4z2
Coefficients = 6, -9, and 4
(ii) 3xyz – 8y
Terms = 3xyz, and -8y
Coefficients = 3, and -8
(iii) 6.1x – 5.9xy + 2.3y
Terms = 6.1x, – 5.9xy, and 2.3y
Coefficients = 6.1, – 5.9 and 2.3
4. Find the area of a square with side 5x2y
Solution:
Given that the side of square = 5x2y
Area of square = side2 = (5x2y)2 = 25x4y2
5. Calculate the area of a rectangle whose length and breadths are given as 3x2y m and 5xy2 m respectively.
Solution:
Given,
Length = 3x2y m
Breadth = 5xy2 m
Area of rectangle = Length × Breadth
= (3x2y × 5xy2) = (3 × 5) × x2y × xy2 = 15x3y3 m2

Long Answer Type Questions:

6. Simplify the following expressions:
(i) (x + y + z)(x + y – z)
(ii) x2(x – 3y2) – xy(y2 – 2xy) – x(y3 – 5x2)
(iii) 2x2(x + 2) – 3x (x2 – 3) – 5x(x + 5)
Solution:
Notes: “+” × “+” = “+”, “-” × “-” = “+”, and “+” × “-” = “-”.
(i) (x + y + z)(x + y – z)
= x2 + xy – xz + yx + y2 – yz + zx + zy – z2
Add similar terms like xy and yx, xz and zx, and yz and zy. Then simplify and rearrange.
= x2 + y2 – z2 + 2xy
(ii) x2(x – 3y2) – xy(y2 – 2xy) – x(y3 – 5x2)
= x3 – 3x2y2 – xy3 + 2x2y2 – xy3 + 5x3
Now, add the similar terms and rearrange.
= x3 + 5x3 – 3x2y2 + 2x2y2 – xy3 – xy3
= 6x3 – x2y2 – 2xy3
(iii) 2x2(x + 2) – 3x (x2 – 3) – 5x(x + 5)
= 2x3 + 4x2 – 3x3 + 9x – 5x2 – 25x
= 2x3 – 3x3 – 5x2 + 4x2 + 9x – 25x
= -x3 – x2 – 16x
7. Add the following polynomials.
(i) x + y + xy, x – z + yx, and z + x + xz
(ii) 2x2y2– 3xy + 4, 5 + 7xy – 3x2y2, and 4x2y2 + 10xy
(iii) -3a2b2, (–5/2) a2b2, 4a2b2, and (⅔) a2b2
Solution:
(i) x + y + xy, x – z + yx, and z + x + xz
= (x + y + xy) + (x – z + yx) + (z + x + xz)
= x + y + xy + x – z + yx + z + x + xz
Add similar elements and rearrange.
= 2xy + xz + 3x + y
(ii) 2x2y2– 3xyz + 4, 5 + 7xy – 3x2y2, and 4x2y2 + 10xy
= (2x2y2– 3xy + 4) + (5 + 7xy – 3x2y2) + (4x2y2 + 10xy)
= 2x2y– 3xy + 4 + 5 + 7xy – 3x2y+ 4x2y+ 10xy
Add similar elements and rearrange.
= 3x2y+ 14xy + 9
(iii) -3a2b2, (–5/2) a2b2, 4a2b2, and (⅔) a2b2
Answer= (⅚)a2b(Self Assessment)
8. Subtract the following polynomials.
(i) (7x + 2) from (-6x + 8)
(ii) 3xy + 5yz – 7xz + 1 from -4xy + 2yz – 2xz + 5xyz + 1
(iii) 2x2y2– 3xy + 4 from 4x2y2 + 10xy
Solution:
(i) (7x + 2) from (-6x + 8)
= (-6x + 8) – (7x + 2)
= -6x + 8 – (7x + 2)
= -6x + 8 – 7x – 2
= -13x + 6
(ii) 3xy + 5yz – 7xz + 1 from -4xy + 2yz – 2xz + 5xyz + 1
= 5xz + 5xyz – 7xy – 3yz (Self Assessment)
(iii) 2x2y2– 3xy + 4 from 4x2y2 + 10xy
= 21xy – 4 (Self Assessment)
9. Calculate the volume of a cuboidal box whose dimensions are 5x × 3x2 × 7x4
Solution:
Given,
Length = 5x
Breadth = 3x2
Height = 7x4
Area of cuboid = Length × Breadth × Height
= 5x × 3x2 × 7x4
Multiply 5, 3, and 7
= 105xx2x4
Use exponents rule: x× x= x(a+b)
So, 105xx2x4 = 105x1+2+4 = 105x7
10. Simplify 7x2(3x – 9) + 3 and find its values for x = 4 and x = 6
Solution:
7x2(3x – 9) + 3
Solve for 7x2(3x – 9)
= 7x2 × 3x × -7x2 × 9 (using distributive law: a(b – c) = ab – ac)
= 7 × 3x2x – 7 × 9x2
= 21x3 – 63x2
So, 7x2(3x – 9) + 3
= 21x3 – 63x2 + 3
Now, for x = 4,
21x3 – 63x2
= 21 × 43 – 63 × 42
= 1344 – 1008
= 336
Now, for x = 6,
21x3 – 63x2
= 21 × 63 – 63 × 62
= 2268

k c nag miscellaneous question

https://youtu.be/ji1CYuEeKSA